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NOMENCLATURE

English Letters

a,A,b,B,c,C,d,D,e,E,f,F -~ phase angles and magnitudes predicted by string
theory

C_ - self-aligning torque

D -~ tire diameter

F - force normal to wheel plane

F - tire vertical load

h - tire footprint half length
K - tire lateral stiffness
p =~ tire inflation pressure

q - pneumatic trail

s - distance around tire circumference
t - time
v - road speed

X = displacement of wheel plane midpoint from a fixed reference point

y - displacement of the leading edge of the contact patch from a fixed
reference point

y - displacement of the trailing edge of the contact patch from a fixed
reference point

z - displacement of the leading edge of the contact patch from the
wheel plane

z - displacement of the trailing edge of the contact patch from the
wheel plane

X =~ lateral excitation amplitude
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I. INTRODUCTION

The problem of shimmy of rolling wheels has been of interest for many
years, particularly in the case of aircraft design, where weight restrictions
limit the remedies which may be applied to prevent this instabllity phenomenon.
A number of theories have been proposed for quantitatively explaining shimmy
characteristics in the rolling wheel. These range from relatively simple
theories involving the point contact of a rigid wheel to much more sophisti-
cated theories treating the tire as an elastic body of some complexity. Among
these latter theories, perhaps the most common single element is that of the
so-called "string theory" description of the motion of the center line of a
rolling pneumatic tire. This name arises from the description of the tire
midplane by means of a relatively simple differential equation identical to
that which would be used to describe a string under tension with lateral
restraint by an elastic foundation. It is a purpose of this investigation to
assess the adequacy of these string models for the pneumatid tire.

Although several theories have been proposed for the calculation of
shimmy characteristics, only limited experimental work is aveilable in this
area, and partly as a consequence of this, clear indications pointing out the
best shimmy theory are not yet available., In addltion, experience with design
problems seems to indicate that shimmy phenomenon can occur under situations
when they are not predicted by existing theoretical formulations. For this
reason there is still continuing interest in determining the source of in-

adequacles of the present theories. It 1s conceivable on the one hand that



the theories themselves could be in some manner deficient. It is also con-
ceivable that the elastic constants used to describe a pneumatic tire, in
terms of string theory, could be in error since these constants sre almost
universally taken under static or at best slow rolling conditions. A

major objective of this study is to attempt to ascertain whether such
statically~determined elastic constants are adequate for pneumatic tire de-

scription.



II. SUMMARY OF RESULTS

This study is based upon scale modéling of a 40 x 12; 14 PR Type VII
aircraft tire fabricated to a scale ratio of 8.65. A number of such scale
models were made and their static elastic consténts, as well as slow speed
rolling constants, were determined. This data was used as input for a se-
quence of tire calculations.

The tire calculations carried out here used both point contact and finite
contact patch length theory as is commonly used in the tire shimmy literature,
for example, von Schlippe and Dietrich [1] and Segel [3]. Computations were
carried out for the case of a wheel under forced sinusoidal steer angle oscil-
lation and, separately, under forced sinusoidal lateral displacement of the
wheel hub center. The quantities calculated were lateral force as a function
of time, self-aligning torque as a function of time, and their phase angles
with respect to either the forced steering variation or the forced lateral
variation. The output response quantities were slnusoidal in all cases, and
hence the output computation may be thought of in terms of an amplitude and
a phase angle with respect to the forced displacements.

Such computations were compared with data obtained from these small
scale tires under dynamic tests on a 30-in. diameter small scale road wheel.
Frequencies from 1 to 7 Hz and surface velocities from 0.84 to 38.7 ft/sec
were used. It was found that the critical ratio describing these motions
was path length dependent, in that all quantities could be reduced in a di-

mensionless fashion by expressing them as the ratio of input frequency to



surface velocity. The data also showed good linearity of force and moment
characteristics with input steer or displacement amplitudes. These experi-~
ments are more extensive than the earlier data of Saito [hj, but are generally
in agreement with them.

In general the experimental data agreed well with calculations based on
finite contact patch string theory. For the case of lateral displacement cf
the hub center point, all characteristics seem to be predicted quite well by
string theory except for self-aligning torque, whose predictions are high by
a factor of two. For the case of steer angle displacement, all properties
were predicted well using string theory with the exception of the lateral
force phase angle, which differs from experimental data by approximately 50°.

Several different elastic constants were used in the computations, in
order to see if variations in them resulted in closer agreement between theory
and experiment. However, no single consistent set of tire elastic constants
could be found which better explains the dynamic response of the tire than the
constants gotten directly by experimental measurement from static and slow
rolling measurements.

In corroboration of this latter conclusion, the tire lateral elastic
constant was measured as a function of frequency and essentially no frequency

effects were found up to 7 Hz.



ITTI. TIRE CONTACT ANALYSTS USING STRING THEORY

The equation governing position of the contact patch is based on the
position and orientation of the wheel plane. In its simplest form the tire
may be considered to éontact the ground at a single point, such as 1s shown

in Fig. 1. von Schlippe and Dietrich [1] have shown that under this
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Fig. 1. Geometry for tire point contact analysis.
assumption the motion of the contact patch can be approximated by the equation
1
— = Jp— + ¢ 1
K (1)

where s is the forward motion and A is a tire property given the name relax-

ation length. =z is a function of s only, and here

Zz = y-Xx (22)



Equation (1) has as its origin the fact that solutions to it closely
resemble experimental data on the centerliﬁe displacement of yawed tires.
This equation is identical in form to the equation for lateral displacement
of a tightly stretched string supported laterally by an elastic foundation,
and for this reason such formulations are given the generic name "string
theory."

If the contact patch has finite length 2h, it is necessary to introduce
coordinates § and z defining the position of the trailing edge of the contact
patch as shown in Fig. 2. Due to the introduction of this length, z now

takes the form

y - (x +ho) (2b)

N
Il

while

y - (x-h¢) (2¢)

N
1]

Thus, Eq. (1) must now be modified by the introduction of Eq. (2b) into it,

which yields

e

1, - % L
tIy = Tx+e(l+Th) (3)

This is the fundamental equation for tire tracking. Two special cases of

this problem will be investigated. First the simplified point contact prob-
lem and then the finite contact patch length approach. Each case will con-
sider two separate input conditions, one a pure sinusoidal lateral displace=~

ment and the other a pure sinusoidal steer angle input.
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A. POINT CONTACT

The point contact problem considers h=0 in (3). This can then be sepa-
rated into two problems. The first will let ¢ = O and x = X sin (Ot, where
Q 1s the frequency of a sinusoidal lateral displacement. The second case

will let xo = Q and ¢ = ¢O sin Qt.
Case 1: Sinusoidal Lateral Motion
¢ =0 and I sin Qt (4)

Equation (3) becomes



v . L S -
as A Y n X, sin at

where v t = s.
o

The complementary solution is a transient and decays rapidly.

-s/A\
Ae S/
Thus a particular solution of the form
= si t + Q
Yy v, sin(@ )

will be used as the solution to (5), where

can g = -2 _ @
v rw
o)
and
Yo vo
_— = —— = |cos a]
X

© Jvi + (n)°

The lateral force on the hub may be expressed as

Fw = KLz = KL(y-x)

Substituting (4), (6), and (7) into (9) and simplifying gives

F = K x |sin of-sin(t + a
, = K x|sin ol sin(at +a)

where

sin @ cos O
tan a = —————

2
cos -1

(5)

(6)

(7)

(9)

(10)

(11)



Therefore the maximum lateral force due to a sinusoidal lateral displacement,

assuming a point contact patch is

(F,) = K -xolsin o (12)

Fw max L
and its corresponding phase angle is given by (11).
Case 2: Sinusoidal Steer

x = 0 and ¢ = ¢ sin Ot (13)

Equation (13) now becomes

=3
+
> =
e
1l

¢O sin Qt (1k)

[e B
n

Again, using only the steady state solution,
vy = vy, sin(at + a) (15)

where again

tan @ = - o2 (16)
v
o
and
v v
-2 = — 2% < cosa (17)

x¢o 2 2
J v, + (AQ)

The lateral force on the hub becomes

F, = Kz = Ky = KX ¢0|cos ale sin(Qt + b) (18)



where
b = « (19)

Therefore the maximum lateral force due to a sinusoidal steer angle assuming

a point contact patch is

(Fxlf)max = KL}\-d’Olcos ol (20)

and its corresponding phase angle is given by (19). It is noted that the
point contact theory necessarily predicts no self-aligning torque for either

the case of sinusoidal lateral motion or sinusoidal steer motion.

B. FINITE CONTACT PATCH LENGTH

A finite contact patch of length 2h is now introduced by means of the
concept that the patch is immovable once it contacts the ground. Hence the
forward contact point is the critical one, since it determines all that fol-

lows. Denoting the trailing edge by a bar,

y(s) = y(s-2h) (21)

Assume for simplicity that the points z and 2, and hence y and &, are con-
nected by a straight line. Referring to Fig. 3, the side force Fw and the

self-aligning torque CZ may be computed.

o= ootar = o fzeTtMan ¢ [ ot gy,
~00 o o

1) R

10



These limits of integration are approximations to make the resulting algebraic
expressions simpler, and are justified since displacements nearly vanish some
distance away from the contact patch. o is a stiffness constant per unit

length. Carrying out the integration and simplifying gives

FW = o(z+z)(h+\)

:

— =

|

|

\
\

WHEEL PLANE
> Pl >

— TIRE CONTACT PATCH
2

Fig. 3. Geometry for determining FW and CZ.

However,
7tz
= K ——
Fy L <2 > (22)
thus
K
L
g = 2(h+)\.) (23)
Similarly,

11



Cz = g /[ (h+§ )Ee_gl/x dgy - o f (h+§2)Ze'§2/xdg2

h z+z Z=Z ‘>
+Uf§5<> < < d§5

where the same simplifying approximations are made in the limits of integra-

tion. Integrating and simplifying

2
h
< > TS (24)

Case %: Sinusoidal lateral Motion

As before, ¢ = 0, x = X sin Ot and y = Yo sin(qt + @). Now, however

o

y o= 'yo[sin 2 (s-2n) +o] (25)

Thus z = y-x remains as before, but now z = §-x. Also yo = xo cos « which is

the same as before (8). Substituting z and z in (22) and simplifying

K—"’ = C sin(Qt+c) = z+z (27)
L
where
2hQ AQ
-gin —
o 0
= +
c arctan ohe a (28)
cos — - 1
v
0
and
2]1/2
2h K
C = x |cos al <£ - cos ——{> <lln 2, VQ (29)
o

Therefore the maximum lateral force due to a sinusoidal lateral displacement,

assuming a finite contact patch length, is

12



K 2 2{1/2
h h A
(F) =—£x|cosa|<L-cos—2—Q> +<sin—2—9+2—n>
2 o v v
o] o] o}

Y’ max v
(30)

and its corresponding phase angle is given by (28).
Unlike the point contact theory, the finite contact approach predicts a
self-aligning torque for a lateral displacement input. This is obtained by

substituting z and z in (24) and simplifying

2CZ _
= D sin(Qt+d) = z-z
2
L 3 (ht\)
where
. 2hQ
-sin —
vo hQ
d = arctan| ————] + xand D = 2x |cos a sin —| (31)
2h§ o Vo
cos — = 1
v
Thus
h2 hQ)
= —_ in — | si +
c, K™ S0 xo|cos a sin VO| sin(Qt+d) (32)

Therefore the maximum self-aligning torque due to a sinusoidal lateral dis=-

placement, assuming a finite contact patch length, is

2
~ h . hQ
(Cz)max = KLE + 5—(h+>\.)J xol cos @ sin —Vol (33)

and its corresponding phase angle is given by (31).

Case Lb: Sinusoidal Steer

For sinusoidal steer the forward portion of the contact patch is governed

by

15



but, for a finite contact patch length, z = y - h¢, thus

H2
+
=

1
= [ + -
Yy (1 x h)

Again using a particular solution y = Y, sin(ot +a), with ¢ = ¢O sin Ot,

tan o = - %—Q as before, but
8]

1
¢ (L +=h)
= ° A = ¢O()\.+h) |cos qf (34)

RN CERG

Now, to find F\U and Cz’ z and z must be substituted into (22) and (2k4).

y - ho and z = y + ho (35)

N
1]

with

7
0

- 0
i + = i ‘— - + l
Y, sin(qQt +a) and y y, sin v (s-2h) + &

Thus, from (22),

2F
¥

x - E sin(Qt+e) = z+z
L
Substituting for z and z and simplifying
. 2hQ
-sin
e = arctan {————— +
cos-—hQ+l
Vo

and

(36)

hQ
E = 2(A+h) ¢O-‘ cos Q cos<;,—>

(e}

Thus,

.sin(Qt+e) (37)

= hi) ¢ »
F KL( ) o

(?9>
cos & cos|l—
VO

14



Therefore the maximum side force due to a sinusoidal steer angle, assuming a

finite contact patch length, is

(38)

hg
cOos (scos vo

and its corresponding phase angle is given by e in Eq. (36).

(F\[/)max = KL(h+>\.) ¢o-

The self-aligning torque is found from (24).

2CZ
= F sin(Qt+f) = z-z

2
K™ T 3(am0)

Substituting for z and z and simplifying

2
F = ¢ {Ek—h) cos & - (A+h) cos Q - cos(gkﬁ):l
o Vo
+ E?x.+h) cos o * sin<‘2:l_9> - 2h sin Ot} 2} 1/ (39)
o

and
2 % - (A+h) sin -271?-
£ = arctan — + o (40)
(A+h) cos 55— = (A~h)
o}
Thus,
c = EIi N +i- - F . sin(Qt+f) (41)
z 2 %(h+\)

Therefore the maximum self-aligning torque due to a sinuysoidal steer angle is

K 2
L h
Cluax = 2 [k : 5(h+>\)jl ‘F (42)

and its corresponding phase angle is given by f in Eq. (LO).

15



IV. SCALE MODEL AIRCRAFT TIRE PROPERTIES

Scale model aircraft tires can be built whose statlc and slow-rolling
properties closely match a full size prototype on a dimensionless basis, as
was reported in Ref. [2]. The tires used in this study are models of a LO x
12 ~14PR Type VII aircraft tire withan 8.65 scale factor. Their static prop-
erties closely match the properties reported in Ref. [2]. Figure 4 gives a
comparison of the two tires used in this study with the prototype in a slow-
rolling, yawed tire test. Side force and self-aligning torque properties are
important in evaluating shimmy theories, as will be shown in the following
sections. Since in shimmy theories tire velocity is one of the independent
variables, it becomes important to determine the velocity dependence of these
properties in steady state rolling. For this reason, a series of five model
tires were run at various yaw angles up to speeds of 80 ft/sec, and side force
and self-aligning torque recorded. Figures 5, 6, and 7 show those results
plotted against Vﬁf;;7?% a dimensionless velocity. The pneumatlc trail, 9,
is the ratio of CZ/F“f The results show essentlally no velocity effect on
steady state side force and self-aligning torque of a yawed tire. Dynamic
and steady state data for full size aircraft tires is scarce, so no compari-
son of model and prototype is possible here, However, since statlc and slow-
rolling properties of model and prototype agree, it can be expected that the
steady state results presented in Figures 5, 6, and 7 and the dynamic results

presented in Section XI are representative of full size aircraft tire prop-

erties.

16
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Fig. 5.
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The model and prototype tire operating conditions and statle shimmy
properties are given in Table I. The lateral stiffness KL was obtained
statically and also at freguencies up to 6.5 Hz, the highest frequency used
in the lateral dynamic experiments. The lateral stiffness did not vary more
than iB% in the entire frequency range.

In view of the fact that the tire elastic properties determined by static
or slow rolling experiments did not deviate from those determined dynamically,
within the frequency ranges covered here, the static tire properties given
in Table I were used for the subsequent shimmy calculations given later in

this report.

TABLE T

STANDARD TIRE OPERATING CONDITIONS AND STATIC SHIMMY PROPERTIES

P F K
Tire (bo1)  (inn) p01Z32 3 3 FLOB ()
Mo;ie]._V Aw-‘zo 25 7 !ALLA53 . ibl . 202 . 523 .80k .15%
Model A-21 22.5 i, sh .098  .207 — . 762 . 167
Model A-22 20.5 4, 58 .098  .211 Lok <776 . 136

Model A-23 19.5 L, 61 .099 .21k .390 . 788 .132

Model A-24 21 4,59 .099 214 . 298 .816 .1l27
Prototype 95 39.3 .099 .210 324 . 665 . 100
4ox12 14 PR




V. DYNAMIC MEASUREMENT AND DATA ANALYSIS

The h—l/2-in. diameter model tires previously described were run on the
30-in. diameter cast iron road wheel discussed in Ref. [2]. A model tire
and hub were mounted in a wide yoke which allowed considerable lateral mo-
tion. The yoke 1s in turn mounted on a hinged arm in such a way that it
can pivot about a vertical center line of the wheel. The hinged arm is loaded
vertically by a series of dead weights. The complete arm assembly is shown

in Fig. 8.

Fig. 8. Overall view of model tire testing apparatus.
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The lateral motion of the wheel was obtained by attaching the axle to an
oscillating yoke which gave a sinusoidal displacement of known magnitude.
This was driven by a modified saber saw, the saw having included in its gear
train a Scotch yoke mechanism giving a very clean sine wave. The motor speed
control in the saber saw allowed a frequency range of 1.6 to 6.5 Hz after
extra gearing was added. The throw or pitch of the walking beam was adjust-
able, and is illustrated more clearly in Fig., 9. This allowed variasble ampli-
tudes from 0.025 in. to 0.200 in. in either direction. A linear variable
differential transformer attached to the axle gave an electrical signal pro-
portional to the axle lateral displacement. The lateral force between the
point of fixed displacement and the tire was measured by means of a strain
gage force transducer inserted between the axle and the walking beam of the
saber saw mechanism. Similarly, the corresponding self-aligning torque was
measured by a small cantilever beam force transducer capable of measuring
the torque on the yoke about its vertical pivot axis. Figure 10 illustrates
the entire apparatus as it was set up for forced lateral displacement of the
rolling tire. The saber saw is on the right with the force transducer located
between the outside of the yoke and the saw. The linear variable differential
transformer is on the left side of the yoke, while the self-allgning torque
transducer is underneath the arm and is hidden from view in Fig. 10.

Sinusoidal steering motion was imposed using a low force level electro-
magnetic shaker attached to a steering arm, which may be seen most clearly
protruding from the front of the yoke in Fig. 8. This shaker was used since

it produced an extremely clean sine wave at the low force levels needed for
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Fig. 9. Components of the lateral excitation system.

Fig. 10. Overall view of lateral excitation apparatus.
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steering the tire. The shaker operated up to 10 Hz. It gave amplitudes up

to 2.6° using a 6~in. steering arm. The shaker was attached to a 6-in. tube
at the front side of the yoke as is shown in both Figs. 8 and 9. Strain gages
at the base of the arm allowed the measurement of the moment input to the
tire. The linear differential transformer was set perpendicular to the axle
of the wheel and 6 in. from the wheel center, giving a signal proportional

to a steering angle. The axle of the wheel was restrained from lateral motion
and the lateral force measured using the same force transducer as in the
lateral displacement experiment. This system allowed the tire to be excited
in pure sinusoidal steer while simultaneously measuring the resulting force
and moment output.

The input displacement and the resulting force and moment signals were
all recorded simultaneously on a four channel tape recorder. The frequency
of the input motion was swept over the entire range from 1.6 to 10 Hz. The
data was analyzed using a swept frequency computer program developed at the
Bioelectrical Science Laboratory at The University of Michigan. Figure 11
shows the basic elements of the process in its schematic form. Figure 12 is
a sample Bode plot output of the torque and phase angles for a steer input of
the model tire A-25. However, for the results in Section VI, the amplitude
ratio and phase angles were printed out directly from the computer program.
It should be noted that this technique extracts the frequency response from
quite noisy output signals provided that the input is a clear sinusoidal

signal. This computer program is thus quite versatile in its application.
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Similar tests were also run with the tire 1lifted slightly from the road-
wheel. These experiments gave the inertial loading and phase angles associ-
ated with the mass of the tire, yoke, and axle and the saber saw drive system.
These inertia forces and corresponding phase angles were then subtracted vec-
torially from the dynamic signals in order to remove all the inertia effects

from the data.
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VI. COMPARISON OF STRING THEORY CALCULATIONS AND MEASUREMENTS

The fundamental purpose of thls report i1s to compare calculated dynamic
tire properties, using string theory as a basis, with such properties mea-
sured experimentally. Examination of the general nature of string theory
seems to show that the clearest way to achieve this is to separately apply
lateral displacements to the tire, both theoretically and experimentally, and
to in addition separately apply a sinusoldal steer angle to the tire, again
in both the analytical and experimental modes. Comparison of the resulting
force and moment amplitudes and phase angles then provides a good test of
such string theory. This in turn should be helpful in deciding whether or
not such theories are adequate for shimmy computations.

The fundamentals of string theory were outlined in Section III of this
report, and calculations were made using those expressions for lateral force,
self-aligning torque and their corresponding phase angles under conditions of
lateral wheel displacements and steer angle displacements. The tire param-
eters used in these computations, namely, A, h, and KL were obtained from
static values or based on static measurements of the model tires used in
these experiments.

One clear aspect of string theory as used to describe the action of
pneumatlic tires is the complete linearity of force and self-aligning torque
with respect to lateral displacement or steer angle. The force and moment
quantities are exactly proportional to displacement or steer angle in the

steady state condition. In order to check this result experimentally, both
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lateral and steer angle displacement experiments were conducted at two ampli-
tudes. The results are shown at Figs. 13 and 14 for two different surface
speeds. TFigure 13 shows self-aligning torque, lateral force, and the two cor-
responding phase angles due to lateral displacement of the wheelhub. It is
interesting to note that for both lateral displacement and steer inputs, good
linearity exists for both force and moment amplitudes, as well as their phase
angles. Figures 13 and 1k illustrate that linear string theory is quite
effective in these experiments. Figure 13 also shows that the self-aligning
torque per unit lateral displacement i1s always slightly larger for the smaller
of the two displacement inputs. It is known that the self-aligning torque is
very sensitive to slip in the contact patch, and also to surface conditions.
It appears that the basic linearity is not necessarily assured in the experi-
mental situation, although the deviations are not major.

Figure 14 shows self-aligning torques, lateral forces, and phase angles
for sinusoidal steer angle input. Here, in a general way, the results show
excellent linearity. Two features are of particular importance here. The
phase angle for the lateral force exhibits a discontinuity at 7.8 Hz at 3.1
ft/sec surface velocity. This probably indicates a system natural frequency
since the corresponding lateral force has dropped to a very small value at
that condition. The self-aligning torque also exhibits a maximum at this

same frequency at a surface velocity of 19.7 ft/sec. In addition, self-
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aligning torque also exhibits a large and obvious shift at approximately 3
Hz, which may be a tire natural frequency. Calculations based on string
theory indicate that such is the case, The phase jump accompanying this
natural frequency indicates that small amplitude steer motion is more sus-
ceptible to phase jump effects than large amplitudes steer motion. This
seems to imply that 'small amplitude experimental work would be more satis-
factory for checking various shimmy theories than would large amplitude ex-
periments.

Again, string theory calculations are shown in Fig., 14 compared with ex-
perimental data. In general, the experiments indicate an approximately linear
relationship between steer angle amplitude and the corresponding lateral force
amplitude. This implies that tire properties such as lateral stiffness re-
main nearly constant over this range of amplitude and frequency. Hence, the
assumption that lateral stiffness is a constant property of the tire, mea-
surable at zero frequency and zero rolling velocity, is probably Jjustified.

Figures 15, 16, and 17 show similar results for other road wheel veloci-
ties. Predictions based on the largest and smallest road surface velocitiles,
again using string theory, are also shown. Figures 18 and 19 are three-di-
mensional plots of lateral force for varying lateral and steer angle dis-
placements. These attempt to convey the relationship of excitation frequency
and road speed to the corresponding lateral force.

An examination of string theory equations as shown in Section III suggest
that the important independent variable is the ratio of the excitation fre-

quency to road speed. Filgures 20, 21, and 22 present the results from a
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STANDARD CONDITIONS, LATERAL DISPLACEMENT = 0.05 IN.
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variety of road speed tests, but now in the form of dimensionless parameters.

A

5.9}
7 ;—) and may be thought of as a

e}

The independent variable is chosen to be (
forcing frequency. The dependent variables are dimensionless lateral force,
self-aligning torque and their corresponding phase angles. In Figs. 20, 21,
and 22, the most noticeable result is that the data clusters closely about

a single band using this ratio Q/vb. Two or more experimental data points
near or at the same dimensionless frequency are actually data from two or
more separate road speed tests. The data for lateral displacement of tire
A-20 is shown in Fig. 20. There is excellent grouping of the self-aligning
to?que and the lateral force response values, as well as the phase angles,
with the self-aligning torque having the greatest dispersion. Similarly,
data for the lateral excitation of tire A-25 is shown in Fig. 21. Again the
grouping is excellent except for some of the scatter in self-aligning torque
curves, However, it should be pointed out that self-aligning torque is ex-
tremely sensitive to friction and surface property conditions which may vary
from test to test.

The data for steer angle excitation of tire A-23 is shown in Fig. 22.
Again the grouping is excellent exceptlfor a series of isolated points shown
in the dotted areas. All of these points represent data taken between 7.5
and 8 Hz excitation, at various road speeds. Two of these areas were previ-
ously mentioned in a discussion of Fig. 1L as areas involving natural fre-
quencies of the tire or supporting arm system. The independence of road
speed from this phencmenon suggests that the 7.8 Hz region is probably one

of the natural frequenciles in the entire hinged arm or some part of it.
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In any case these areas contain data isolated from the general range of the
other test points.

Figures 20 and 21 show predictions for lateral displacement of model
tires A-2C and A-23. Point contact theory seems to predict lateral force
and phase angle relationships similar to those observed in the experiments.
However, the basic limitation of point ccntact theory is that it predicts a
zero self-aligning torque. Finite contact patch theory seems to predict a
correct general trend but the numerical values are not as close to the ob-
served data as is point contact theory. The lateral force predictions are
approximately 20% higher than the observed data while the self-aligning torque
predictions are about 100% higher. However, the phase angle of the self-
aligning torque is remarkably close to the observed data and so 1ln general
one may conclude that on the whole string theory appears to be a reasocnably
good method of predicting the dynamic characteristics of a pneumatic tire
under lateral excitation.

Similar predictions for the case of sinusoidal steer excitation of model
tire A-23 are shown in Fig. 22. Again point contact theory only predicts
side force and its phase angle. The amplitude of this force agrees fairly
well with observed model tire data but the phase angle prediction differs
somewhat from the observations. On the other hand, the finite contact
patch theory seems to predict values much closer towhat is observed. Here,
however, the lateral force phase angle predictions indicate a discontinuity,
while the observed data shows more gradual changes. Self-aligning torque

predictions appear to be on the whole rather gocd.
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An apparent weakness of current shimmy theories is thelr dependence upon
elastic properties and relaxation length of tires taken from ‘static or slow
rolling tests. One objective of this present study was comparison of predic-
tions of dynamic tire forces and moments with measured values in order to
validate this procedure, or to prove it wrong. In order to check this, a
parametric study was carried out in which varying lateral stiffness values,
KL’ and relaxations length, A, were used in order to attempt to find a set of
values which would cause our computations to agree more closely with the
experimental values of Figs. 20-22. Various attempts to do this seem to show
that the static values obtained from Table I give results approximately as
good as can be obtalned by any other set of values.

In summary, the results indicate that lateral forces and self-aligning
torques are linearly proportional to tire lateral stiffness KL and to the
amplitude of either steer or lateral displacement. In addition, the results
show that the ratio Q/vO is the proper independent variable by which fre-
quency should be measured. The comparison between experimenfal data and
string theory predictions indicates surprisingly good agreement between the

two in a general way, using lateral stiffness and relaxation length values

obtained from the static or slowly rolling tire.
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IX. CONCLUDING REMARKS

Comparisons between measured tire force and moment response, using small-~
scale models, and computations using the so-called string theory to describe
the tire centerline displacement, show that in general string theory provides
an adequate model for use in shimmy analyses of tire-wheel systems. While
the calculated tire properties sometimes differ quantitatively from the mea-
sured properties, in all cases the trends are correct and in most cases quan-
titative agreement is surprisingly good. All such computations were performed
using tire elastic properties obtained from static or slow rolling tests.

Based on these results, it seems quite probable that no significant im-
provement in the accuracy or validity of existing shimmy theories could be
achieved by attempting to incorporate into them elastic properties of the
tire gotten from high-speed or high-frequency dynamic tests. Not only are
such tests extremely expensive, but based on these results, such tests would
not change shimmy predictions appreciably. Improvement in shimmy predictions

must be sought in other areas.
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